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1 Background

Principal components analysis (PCA) [1, 2] is widely used for dimensionality reduction
in a variety of scientific fields including single-cell RNA sequencing (scRNA-seq) data
analysis. PCA constructs new variables – i.e., principal components (PCs) – that are
linear functions of the original features, successively maximize variance, and are
uncorrelated with each other [3]. The first few PCs explain the most variance in the
data and are used as a proxy for the original data set in exploratory analysis. By
compressing the input data into a low-dimensional space, PCA removes much of the
random high-dimensional noise and reduces the size of the data. This improves the
resolution of interesting signal (e.g., subpopulations or trajectories in scRNA-seq data)
as well as the efficiency of downstream procedures like clustering and visualization.

More specifically: consider an input scRNA-seq matrix Y where the rows are the
samples (i.e., cells) and the columns are the features (i.e., genes). Assume that the
matrix is column-centered, i.e., the mean of each column is zero. We perform an SVD to
obtain the usual Y = UDV′. Each column of UD is a PC containing scores for all cells.
From the Eckart-Young theorem, the best k-rank approximation of Y is

Ỹk = U(,k)D(k,k)V
′
(,k) ,

where M(i,j) contains only the first i rows and j columns of the matrix M. We also
note that the Euclidean distances between cells using their PC coordinates are the same
as the distances computed from Ỹk. This motivates the direct use of first k PCs in
downstream procedures involving distance calculations (e.g., hierarchical clustering,
nearest-neighbour searches), which reduces computational work compared to using Ỹk.

The question now becomes: what is the best choice of k? If too few PCs are used,
we may discard some relevant biological signal that is only captured in later PCs. On
the other hand, if too many PCs are used, we introduce unnecessary noise and offset the
efficiency benefits of having a low-dimensional data set. Deciding how many PCs to
retain is a long-standing topic of study [4, 5], and depends on whether the aim is to
recover the true rank of the signal matrix [5]; to minimize error compared to the true
signal [6]; or to obtain components with a straightforward scientific interpretation [7].

In this report, we explore a number of computational methods for choosing the
number of PCs to retain in scRNA-seq data. We use a variety of simulations to evaluate
different methods in terms of their ability to remove noise and recover the true
biological signal. We demonstrate that the strategies used in existing scRNA-seq
analysis software are suboptimal but robust and largely effective.
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2 A brief review of some PC selection methods

2.1 Elbow detection

The scree plot displays the percentage of variance explained by successive PCs. (We will
denote the variance explained by PC k as σ2

k, where σ
2
k > σ2

k+1.) Here, the aim is to
visually detect the difference between early PCs that capture structure and later PCs
that capture random noise. A sharp drop from the kth to (k + 1)th PC suggests that
most of the structure is captured in the first k PCs [8]. This manifests as an “elbow” in
the scree plot at k, after which there is a plateau in the percentage of variance explained.
To detect the elbow, we consider a line connecting the first and nth PCs, using n = 50
by default. The elbow is defined as the point on the curve in the scree plot that has the
largest perpendicular distance to the line. We then retain all PCs up to the elbow point
(but not including) the elbow point. This algorithm is relatively robust compared to
derivative-based methods that are sensitive to unstable numerical differentiation.

2.2 Parallel analysis

Horn’s parallel analysis [9] involves permuting all observations for each feature of the
input matrix and performing PCA on this permuted matrix. This yields a variance
explained ω2

k for the kth PC. Any PC with a σ2
k (from the original input matrix)

comparable to ω2
k is considered to be uninteresting, as the PC explains no more variance

than expected under a random model containing no structure. One can visualize this
strategy by considering a scree plot and discarding all PCs past the first intersection of
the curves for the variances explained from the original and permuted PCAs.

Several definitions of “comparable” can be used to define the first uninteresting PC.
The simplest is to remove all PCs past and including the first PC where σ2

k < ω2
k.

However, this retains too many PCs in noisy datasets where the original and permuted
variance-explained curves are similar and intersect slowly. Another solution is to repeat
the permutations many times, and define the threshold as an upper quantile of ω2

k for
each k [10]. A PC with σ2

k below this quantile is considered to be feasibly sampled from
the distribution of ω2

k under a random model, and is subsequently discarded. We use
the 95th percentile, which yields a more conservative estimate of the number of PCs.

2.3 The Marchenko-Pastur law

The Marchenko-Pastur law [11] specifies the asymptotic distribution of singular values
for a large random matrix with independent identically distributed (i.i.d.) entries. This
distribution has a strict upper bound that could be used as a threshold on the number
of PCs to retain [12]. To justify this, we assume that our input matrix can be written as
Y = T+X, where T is a r-rank matrix of true signal and X is a matrix of i.i.d. noise.
We further assume that the first r rotation vectors are exactly linear combinations of
the r basis vectors of T, i.e., the additional noise due to X does not affect the
identification of the true basis vectors. This means that the difference between Y and
the low-rank approximation derived from the first r PCs will be equal to X. Thus, we
should take all PCs with singular values greater than the Marchenko-Pastur limit for X.

In practice, the limit needs to be adjusted to account for the magnitude of the noise.
This is most simply achieved by scaling the limit by the standard deviation of the noise,
which is itself estimated by modelling technical variation in the space of the input
data [13]. An alternative approach is to fit the Marchenko-Pastur distribution to the
observed set of singular values for the input matrix [12], adjusting for scaling differences
between the observed and theoretical distributions. However, this requires a complete
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singular value decomposition (SVD) of the input matrix. This is time-consuming as it
precludes the use of approximate SVD algorithms, so we will not consider it here.

2.4 The Gavish-Donoho method

Gavish and Donoho [6] describe a method for determining the optimal threshold for the
singular values. They consider a matrix containing both true signal and i.i.d. noise with
a constant standard deviation. By using only the first k PCs that have singular values
above the optimal threshold, we can minimize the mean-squared error (MSE) of the
low-rank approximation of the input matrix to the true signal. The Gavish-Donoho
threshold needs to be scaled by an estimate of the standard deviation of the noise,
which can again be obtained by modelling technical noise in the input matrix.

2.5 Jackstraw

The Seurat package for single-cell RNA-seq data analysis [14] uses the jackstraw
procedure [15] for determining whether features are significantly associated with
individual PCs. Briefly, observations for each feature in a randomly chosen subset of
features are permuted. The PCA is performed on the modified matrix and a measure of
association is computed for each PC with the permuted observations for the features in
the chosen subset. This is repeated over several iterations to obtain a null distribution
of association measures. The association measure is also computed for each feature and
PC using the original data. A p-value is subsequently obtained for each gene and PC by
comparing its original association measure with that of the null distribution.

In practice, this approach yields a feature-by-PC matrix of p-values that needs to be
consolidated into a decision regarding the number of PCs to retain. We do so by
combining the p-values for each PC using Simes’ method [16]. This yields a combined
p-value representing the evidence against the global null hypothesis for that PC, i.e.,
that it is not significantly associated with any features. We then retain PCs up to the
first PC that accepts the global null at a error threshold of 0.05. We note that a variety
of other strategies can be used to consolidate multiple p-values into a single decision.
However, Simes’ method is appealing as it is robust to correlations between features [17].

2.6 Summation of technical components

The denoisePCA function in the scran package [13] defines the number of PCs to retain
based on the total technical noise in the input data. Technical noise is expected to be
random and uncorrelated across genes, and thus should be mostly present in the later
PCs. The number of PCs to retain is chosen as the smallest value l such that

N∑
k=l+1

σ2
k ≤ ω2

t ,

where N is the total number of PCs and ω2
t is the sum of technical components for all

features, estimated as previously described. This discards later PCs until the discarded
variance is equal to the total technical variance in the data. The value of l is a lower
bound on the number of PCs required to capture the biological signal. Equality to this
lower bound occurs when the signal is wholly captured by the first few PCs, though in
practice, l will be lower than the rank of the matrix containing the signal. Furthermore,
we only use features where the total variance is greater than the estimated technical
component. This ensures that there is some l ∈ [1, N ] that satisfies the above inequality.
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3 Assessing accuracy with the MSE

We assume that Y is the sum of a signal matrix T of the same dimensions, containing
the true signal (i.e., gene expression) in each entry of the matrix; and a noise matrix of
the same dimensions, where each entry has an expectation of zero and is independently
distributed from the other entries. Our aim is to choose k such that the Frobenius norm
of Ỹk −T is minimized. In other words, we want to minimize the MSE of the low-rank
approximation Ỹk from the true signal T. This is arguably the only relevant measure of
performance when PCA is applied to remove noise. We do not intend to interpret the
individual PCs, nor do we care about the true rank of T. Moreover, recall that the
distances between cells computed in the PC space are the same as the distances
computed from Ỹk. Thus, minimizing the MSE of Ỹk will also improve the accuracy of
the PC-based distances with respect to the true distances computed from T.

We can also view the choice of k as a compromise between bias and precision. At the
largest value of k, there is no bias as E(Ỹk) = E(Y) = T, but precision is poor due to
the presence of high-dimensional noise. As k decreases, noise is removed and precision
improves. However, this comes at the cost of introducing more bias when PCs capturing
aspects of T are discarded. The MSE is the sum of the bias ||E(Ỹk)−T||2F and the

variance ||Ỹk − E(Ỹk)||2F , and provides a single overall measure of accuracy.

4 Evaluations with simple simulations

4.1 Simulation design

We considered a simple simulation involving S subpopulations of C cells with G genes.
A proportion of genes P were chosen to drive biological heterogeneity. For each gene g
in the chosen set, the mean expression µgp in subpopulation p was randomly sampled
from a Normal(0, s2) distribution. For the remaining genes, the mean expression was set
to zero for all subpopulations. Each cell was randomly assigned to one subpopulation.
The observed expression for gene g in cell c assigned to p was defined as µgp + εgc where
εgc ∼ Normal(0, w2

g) and represents the effect of technical noise. We tested all
combinations of parameters for S from 5 to 20; s2 from 0.2 to 1; P from 0.2 to 1; C
from 200 to 5000; G from 1000 to 5000; and w2

g of 1 (i.e., constant variance) or sampled
from a Gamma(2, 2) or Gamma(0.2, 0.2) distribution. We also repeated the simulations
where, instead of assigning each cell to a single subpopulation to create clusters, we
created trajectories by treating each cell as a linear combination of two randomly chosen
subpopulations with mixing proportion sampled from a Uniform(0, 1) distribution.

We evaluated each choice of the number of PCs by computing the MSE of the
low-rank approximation Ỹk from the T matrix containing the known signal for each
cell. For each cell, the corresponding column of T was defined as the mean expression
vector of the assigned subpopulation (i.e., µgp) for the cluster simulations. For
trajectories, each column of T was defined as the known linear combination of the two
chosen subpopulations for each cell. In each simulation scenario, we determined the
optimal (i.e., lowest) MSE by testing all possible values of k. We then reported the
results for each method in terms of fold-increases from the optimal MSE. For the
technical summation method, we estimated ω2

t as ||Y −T||2F . (In practice, T is neither
known nor necessary for estimating the technical components, but we have used it here
for simplicity.) For the Gavish-Donoho and Marchenko-Pastur methods, the average
variance of the noise was defined as ω2

t /G, assuming i.i.d. noise across genes.
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Figure 1. Distributions of MSEs for the number of PCs chosen by each method in the
cluster (left) or trajectory simulations (right). MSEs were obtained from 10 simulation
iterations for each combination of parameters, and are shown as fold increases from
the optimal MSE for each iteration. For each method, the dark grey bar on the left
represents the percentage of iterations in which the observed MSE was equal to the
optimal value, while the light grey histogram shows the distribution of all MSEs that
were greater than the optimum. GV, Gavish-Donoho; MP, Marchenko-Pastur.

4.2 Simulation results

Across all simulation scenarios, technical summation performs consistently well with
MSEs close to or at the optimum (Figure 1). In fact, we see that the MSE from
summation is never greater than twice the optimum in any scenario. This motivates its
general use for scRNA-seq data as part of the scran analysis pipeline. On the other
hand, technical summation returns the optimum MSE less frequently than some of the
other methods. This reflects the fact that summation consistently yields a choice of k
below the true rank of T (denoted r), which likely contributes to a systematic shift from
the optimal MSE in some scenarios where the true rank is the optimal choice. (Of
course, there is no guarantee that r is the optimal choice in all scenarios. Nonetheless, it
is instructive to consider the ability of methods to recover r when it is optimal.)

The performance of the Gavish-Donoho method warrants some closer inspection.
When the variance of the noise w2

g is constant, this method is almost perfect with
respect to minimizing the MSE (Figure 2). This is consistent with the theoretical
guarantees on its performance [6]. When w2

g varies across genes, the MSE increases
above that of other methods. This reflects the sensitivity of the Gavish-Donoho method
to violations of the assumption of a constant variance for the noise, which is unfortunate
as (sc)RNA-seq data often exhibits strong mean-variance relationships [13,18]. It is
possible to mitigate violations of this assumption by scaling the input matrix so that
the technical components are the same across all genes. However, scaling would also
distort the magnitudes of the biological components, e.g., by upweighting stably
expressed high-abundance genes with small technical components. This changes the
nature of the problem and obviously precludes the accurate recovery of T.

The use of the Marchenko-Pastur limit also exhibits poor performance, which can be
traced back to its underying assumptions. Like the Gavish-Donoho method, the
application of the Marchenko-Pastur law requires the assumption of i.i.d. noise.
Violations of this assumption lead to increased MSE when the limit is used to choose
number of PCs (Figure 2). However, even when the i.i.d. assumption holds, we observe
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Figure 2. Distributions of MSEs for the number of PCs chosen by each method in
simulations with different levels of heteroskedasticity. MSEs were obtained from 10
simulation iterations for each combination of parameters with no variability in gene-wise
variances, i.e., w2

g = 1; moderate variability, i.e., w2
g ∼ Gamma(2, 2); or high variability,

i.e., w2
g ∼ Gamma(0.2, 0.2). Bars and abbreviations are as described in Figure 1.

inflated MSEs compared to the optimum. This is driven by the fact that the r basis
vectors of T do not define the same subspace as the first r rotation vectors in noisy
datasets. Instead, some of the variance from the true signal will be captured by the > r
rotation vectors. This increases the later singular values above the Marchenko-Pastur
limit and generally results in an overstatement of the number of PCs to retain.

Of the methods that do not require an estimate of the technical noise, the jackstraw
performs slightly better than parallel analysis. However, both have a long tail of large
MSEs, mostly caused by the retention of more PCs than the optimal choice. This is
attributable to the same effect described for the Marchenko-Pastur method. Recall that
the jackstraw tests for associations between gene expression and each PC. In noisy data
sets, genuine signal is captured by later PCs and results in significant associations for
more than r PCs. The same effect applies to parallel analysis where the variance
explained by later PCs is increased above the permutations. The jackstraw is also
subject to random type I errors that introduce further variation in k across iterations.

Elbow detection from the scree plot has large MSEs when the true signal is weak
relative to the noise (Figure 3). This occurs when the subpopulation means are weakly
separated, either due to small differences in µgp or low P . In such cases, the scree plot
will not exhibit any sharp curvature as noise will contribute strongly to the variance
explained by all PCs. Thus, any detected elbow is unlikely to have a strong relation to
the true rank of the signal. As the signal increases in strength, the curvature in the
scree plot becomes more pronounced and the performance of elbow detection improves.
By comparison, the behaviour of each of the other methods is mostly stable with
respect to the strength of the biological signal. This is because they are less reliant on
making distinctions between PCs based on the proportions of variance explained.
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Figure 3. Distributions of MSEs for the number of PCs chosen by each method in
simulations with different levels of separation between subpoplations. MSEs for each
method were obtained from each of 10 simulation iterations for each combination of
parameters with (a) weak separation (s2 = 0.2), moderate separation (s2 = 0.5) or or
strong separation (s2 = 1) between subpopulation means; or (b) a low proportion of
genes (P = 0.2), a moderate proportion (P = 0.5) or all genes (P = 1) involved in
separating subpopulations. Bars and abbreviations are as described in Figure 1.
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Figure 4. Effect of removing biological noise in a simulation with two subpopulations.
(a) PCA plot of the simulation design involving 1000 genes and 100 cells. Cells were split
into two subpopulations, denoted by the point shape. Subpopulation means were set
to 0 or 0.5 for all genes in each population. Biological noise was introduced by adding
an independent standard Normal variate to each observation. Technical noise was also
introduced by adding another independent standard Normal variate to each observation.
(b) Average silhouette widths for each cell, computed using the known subpopulation
labels. Distances were calculated using the true expression for each cell (subpopulation
mean with added biological noise); or using the first few PCs, with k chosen by the
Gavish-Donoho method to remove all random noise or only the technical noise.

4.3 Comments on technical noise

In these simulations, we have only considered the removal of technical noise in εgc. This
is because the technical component of variation is relatively easy to estimate in real
scRNA-seq data. We can add a constant quantity of spike-in transcripts to each cell,
and estimate the technical noise from the variation in the coverage of the spike-ins
across cells. Alternatively, for data involving unique molecular identifiers [19], we could
assume that the noise is driven by Poisson sampling. This is justified by the removal of
PCR amplification biases and associated overdispersion in the counts. However, there
also exists biological noise caused by transcriptional kinetics [20] and cellular processes
like the cell cycle [21]. Choosing k based on ω2

t will not remove such biological noise.
We argue that biological noise is part of the true signal T and should not be

removed. We are only interested in removing the technical noise introduced by the
scRNA-seq protocol as this is always irrelevant to the underlying biology. The
remaining heterogeneity should be preserved as it reflects the true state of the cell
population. Even random biological noise can be critical to the interpretation of the
results, e.g., when studying fate commitment decisions [22]. Its removal may exaggerate
the separation between subpopulations (Figure 4), possibly promoting the identification
of spurious cell types. It is also difficult to estimate the magnitude of biological noise,
and to disentangle random noise from structured variation related to cell cycle or
metabolic activity. Deciding which aspects of biological noise are “uninteresting”
depends heavily on domain expertise and is beyond the scope of this report.
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Table 1. Number of PCs retained by each method on real scRNA-seq data, set to a
maximum of 50 for computational efficiency (capped choices denoted by *).

Method mESC PBMC
Summation 24 10
Jackstraw 4 8
GD 6 50*
MP 50* 50*
Parallel 9 10
Elbow 4 4

5 Testing with real data-based simulations

We generated log-normalized expression values from real scRNA-seq data by following a
published workflow [13]. We first removed low-quality cells with low total counts, low
total numbers of detected features and high spike-in proportions [23]. We computed size
factors for each gene using the deconvolution method [24], and separate size factors for
each spike-in transcript [25]. We divided the counts by the relevant size factors to obtain
log-transformed normalized expression values. We estimated the technical component of
variance of the transformed data for each gene by fitting a mean-dependent trend to the
spike-in variances. We performed feature selection by only retaining endogenous genes
with total variance greater than the technical component. If spike-in transcripts were
not available, we instead used mitochondrial proportions for quality control, and we
estimated the technical component for each gene by assuming Poisson noise.

Given a log-normalized expression matrix Z, we generated a s-rank approximation
Z̃s as described above. For the purpose of simulating data, we treated Z̃s as the matrix
of true signal. We then created the observed matrix Y′ by computing Z̃s + S, where S
is a matrix of the same dimensions as Z. Each row of S consists of values independently
sampled from a Normal distribution with mean zero and variance equal to the estimated
technical component for the corresponding gene. This strategy allows us to incorporate
aspects of real biological structure and technical noise into our simulations. We then
evaluated each method by computing the MSE for the chosen k with respect to Z̃s. As
the true rank of E(Z) is not known, we repeated the simulations using s from 10 to 30.

We used our framework to generate simulated data from a mouse embryonic stem
cell (mESC) data set [26] and a droplet-based data set using peripheral blood
mononuclear cells (PBMCs) [27]. For the mESC data set, we only considered the single
batch in which spike-ins were added, involving approximately 200 cells. For the PBMC
data set, we considered approximately 4000 cells after quality control. Methods for
choosing k were then evaluated as described for the simple simulations. Parallel analysis
and technical summation performed consistently well in both simulation scenarios
(Figure 5). In comparison, other methods exhibited much larger MSEs in one or both
simulations. These results are roughly consistent with those from the simple simulations.
The summation approach is often suboptimal but consistently achieves low error, while
other methods can be more frequently optimal but yield larger maximum MSEs.

We also examined the behaviour of each method on the original data Z. It is
difficult to perceive any consistent pattern, though in general, methods that require the
magnitude of technical noise (i.e., summation, Gavish-Donoho, Marchenko-Pastur)
retain more PCs than the others (Table 1). This is attributable to the fact that random
biological noise is retained, requiring more PCs to account for the greater intrinsic
dimensionality. The other methods do not distinguish between technical and biological
noise and aim to remove both, resulting in retention of fewer PCs upon denoising.
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Figure 5. Average MSE for the number of PCs chosen by each method in the simulations
based on the mESC and PBMC data sets, shown as fold-increases from the optimal
MSE. The height of each bar represents the average fold-increase in the MSE from 10
simulation iterations at each rank s. Error bars represent one standard error.

6 Discussion

Here, we have performed a variety of simulations to assess different strategies for
choosing the number of PCs to retain in scRNA-seq data analysis. The technical
summation method from scran consistently yields low MSEs in all scenarios. While it is
not always optimal, summation does not yield large MSEs either, with no MSE being
more than 2-fold greater than the optimum. This is despite the fact that it does not
guarantee minimization of the MSE or even recovery of the rank of T. Other methods
such as the jackstraw approach from Seurat achieve the optimal MSE more frequently
than summation but also exhibit larger MSEs. Our results suggest that the summation
approach is both satisfactory and robust for general use in a wide range of scenarios.

It is also worth considering the practicalities involved in the use of each method.
The Gavish-Donoho, Marchenko-Pastur and technical summation methods require an
estimate of the standard deviation of the noise. In scRNA-seq experiments, this is most
conventionally achieved by adding spike-in transcripts and estimating the technical
component of the variation in the expression values. However, this may not always be
possible (e.g., droplet-based experiments) in which case assumptions need to be made
about the nature of the noise. For example, we might assume that noise is driven by
Poisson sampling in data sets with unique molecular identifiers, where overdispersion
due to amplification noise is not an issue. The jackstraw method and parallel analysis
do not require the magnitude of the noise but instead repeat the PCA on permuted data.
This avoids the need for spike-ins or assumptions but involves more computational work,
which is unappealing when dealing with large data sets. Elbow detection in the scree
plot is the simplest method as it does not use the noise magnitude or permutations.

In this report, we have only discussed the retention of first k PCs. This is because
the first k components provide the best low-rank approximation Ỹ(k) to Y. However,
we are primarily interested in the approximation to the true signal matrix T, for which
an arbitrary subset of PCs may be better. For example, the first PC could be driven by
one very noisy gene with equal expected expression in all samples – ignoring this PC
would improve the approximation of the remaining PCs to T. One could imagine
formulating a method that achieves even lower MSEs than the optimum in our
simulations by retaining specific PCs based on per-gene estimates of the noise.
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7 Additional information

Simulation code is available at https://github.com/LTLA/PCSelection2018. All
simulations were performed using R version 3.5.0 and scran version 1.9.18, Seurat
version 2.3.4 and RMTstat version 0.3. Count tables for real scRNA-seq data were
obtained from https://www.ebi.ac.uk/teichmann-srv/espresso/ for the mESC data set
and from https://support.10xgenomics.com/single-cell-gene-expression/datasets

for the PBMC data set. This work was supported by Cancer Research UK (award no.
A17197 to Dr. John Marioni).
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